BSH-CP based 3D solid-state NMR experiments for protein resonance assignment.

نویسندگان

  • Chaowei Shi
  • Hannes K Fasshuber
  • Veniamin Chevelkov
  • Shengqi Xiang
  • Birgit Habenstein
  • Suresh Kumar Vasa
  • Stefan Becker
  • Adam Lange
چکیده

We have recently presented band-selective homonuclear cross-polarization (BSH-CP) as an efficient method for CO-CA transfer in deuterated as well as protonated solid proteins. Here we show how the BSH-CP CO-CA transfer block can be incorporated in a set of three-dimensional (3D) solid-state NMR (ssNMR) pulse schemes tailored for resonance assignment of proteins at high static magnetic fields and moderate magic-angle spinning rates. Due to the achieved excellent transfer efficiency of 33 % for BSH-CP, a complete set of 3D spectra needed for unambiguous resonance assignment could be rapidly recorded within 1 week for the model protein ubiquitin. Thus we expect that BSH-CP could replace the typically used CO-CA transfer schemes in well-established 3D ssNMR approaches for resonance assignment of solid biomolecules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assignment of dynamic regions in biological solids enabled by spin-state selective NMR experiments.

Structural investigations are a prerequisite to understand protein function. Intermediate time scale motional processes (ns-micros) are deleterious for NMR of biological solids and obscure the detection of amide moieties in traditional CP based solid-state NMR approaches as well as in regular scalar coupling based experiments. We show that this obstacle can be overcome by using TROSY type techn...

متن کامل

Utilizing afterglow magnetization from cross-polarization magic-angle-spinning solid-state NMR spectroscopy to obtain simultaneous heteronuclear multidimensional spectra.

The time required for data acquisition and subsequent spectral assignment are limiting factors for determining biomolecular structure and dynamics using solid-state NMR spectroscopy. While strong magnetic dipolar couplings give rise to relatively broad spectra lines, the couplings also mediate the coherent magnetization transfer via the Hartmann-Hahn cross-polarization (HH-CP) experiment. This ...

متن کامل

3D structure determination of the Crh protein from highly ambiguous solid-state NMR restraints.

In a wide variety of proteins, insolubility presents a challenge to structural biology, as X-ray crystallography and liquid-state NMR are unsuitable. Indeed, no general approach is available as of today for studying the three-dimensional structures of membrane proteins and protein fibrils. We here demonstrate, at the example of the microcrystalline model protein Crh, how high-resolution 3D stru...

متن کامل

13C spin dilution for simplified and complete solid-state NMR resonance assignment of insoluble biological assemblies.

A strategy for simplified and complete resonance assignment of insoluble and noncrystalline proteins by solid-state NMR (ssNMR) spectroscopy is presented. Proteins produced with [1-(13)C]- or [2-(13)C]glucose are very sparsely labeled, and the resulting 2D ssNMR spectra exhibit smaller line widths (by a factor of ∼2 relative to uniformly labeled proteins) and contain a reduced number of cross-p...

متن کامل

Low-power solid-state NMR experiments for resonance assignment under fast magic-angle spinning.

Solid-state NMR has evolved in the past decade into a powerful technique for the characterization of biomolecular structure and dynamics. Micro-crystalline globular proteins, amyloid fibrils, and membrane proteins can now be routinely studied using solid-state NMR techniques. This was made possible in part due to the development of 2D and 3D homonuclear and heteronuclear experiments that correl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomolecular NMR

دوره 59 1  شماره 

صفحات  -

تاریخ انتشار 2014